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Evolving model of amino acid networks
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The three-dimensional structure of a protein can be treated as a complex network composed of amino acids,
and the network properties can help us to understand the relationship between structure and function. Since the
amino acid network of a protein is formed in the process of protein folding, it is difficult for general network
models to explain its evolving mechanism. Based on the perspective of protein folding, we propose an evolving
model for amino acid networks. In our model, the evolution starts from the amino acid sequence of a native
protein and it is guided by two generic assumptions: i.e., the neighbor preferential rule and the energy prefer-
ential rule. We find that the neighbor preferential rule predominates the general network properties and the
energy preferential rule predominates the specific biological structure characteristics. Applied to native pro-
teins, our model mimics the features of amino acid networks well.
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I. INTRODUCTION

From the perspective of topology, the three-dimensional
(3D) structure of a protein molecule can be represented as a
complex network. In the network, amino acids are vertices
and the interactions between them act as edges. The interac-
tions between amino acids include hydrogen bonds, ion
pairs, disulfide bonds, and van der Waals interactions, which
stabilize the shape of a protein and keep it from falling apart.
The information on interactions can help us to develop the
contact potentials and predict the structural class, secondary
structures of globular proteins, solvent accessibility, fold rec-
ognition, and folding rates [1]. Therefore, many previous
studies implemented amino acid networks to understand the
relationship between structure and function [1,2], and it is
usually found that they are small-world networks. Vendrus-
colo er al. [3] analyzed the network parameter betweenness
to identify the “key residues.” Dokholyan et al. [4] found
that the network’s topological properties are crucial for the
protein’s kinetic ability to fold. Amaitai et al. [5] identified
the functional site residues by the network parameter close-
ness. Atilgan et al. [6] found the correlation between the
average shortest path lengths and residue fluctuations. Jiao et
al. [7] studied the network parameter change for the protein
of Chymotrypsin Inhibitor 2 (CI2) on its high-temperature
unfolding pathway. The above studies have focused on ap-
plications of amino acid networks to specific proteins to
study the correlation between network properties and protein
functions. Ideally, an amino acid network should be con-
structed from an available protein structure. Yet, for the limi-
tation of experiment, the protein structure information is un-
known in most cases. This restricts the tool of amino acid
networks to be used for studying the protein functions.

An evolving mechanism is another important aspect of
complex network studies, which is usually used to explain
the construction process from single individual nodes to the
real complex network. Likewise, these mechanisms or mod-
els may help us to understand the process from residue se-
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quence to amino acid network. Thus, without the protein
structure information the amino acid network can be con-
structed by the evolving model and used to study the protein
functions. Furthermore, the evolving mechanism may give
some useful information on protein folding. However, it is
difficult for existing network models to explain the evolving
mechanism of amino acid networks. First, growing models
[8,9] assume that the number of vertices, N, increases
throughout the lifetime of the network, which is common to
some real networks. However, in the evolution of an amino
acid network, the initial state is the primary structure of a
protein—i.e., an amino acid sequence—and no vertex is in-
creased or decreased throughout the process of folding.
Therefore, general growing models are not suitable for
amino acid networks.

Second, small-world evolving models [10,11] assume that
the vertices are uniform and the probability that two vertices
are connected is random or uniform. For amino acid net-
works, every residue has its own specific characteristic,
which will lead to different orders of interaction between
different amino acids [12,13]. Therefore, amino acid net-
works should exhibit some preferential rules. For example,
the hydrophobic collapse model points out that the first event
of protein folding consists of a collapse occurring via long-
range interactions between hydrophobic residues [14]. The
“framework” model emphasizes the role of short-range inter-
actions in directing protein folding [15]. It assumes that the
secondary structures are formed in an early step of the fold-
ing process before the tertiary structure occurs. These ex-
amples indicate that the connection probability of two verti-
ces in an amino acid network is not uniform. Meanwhile, the
preferential rule is different from the “rich get richer” dy-
namics of the scale-free model [8]. Some especial features of
proteins, such as the residue type and the sequence distance,
will play an important role in the preferential connectivity of
the amino acid network. Therefore, it is necessary to define
the preferential connectivity rules depending on these special
features of proteins.

In the native condition, amino acid networks of proteins
are formed in the process of protein folding. The sequence
information of the primary structure can be used to deter-
mine the protein’s native 3D structure [16]. Therefore, the
evolving model for amino acid networks should meet two
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requirements: mimicking the characteristics of a small-world
network and agreeing with the features of the real process of
protein folding to some extent. Our goal here is to give a
suitable model for these problems.

II. MATERIAL AND RESEARCH SYSTEM

Two data sets were used to deduce and verify the appli-
cability of our model. One is a data set of 101 low-homology
(<10%) proteins, which are selected from the Protein Data
Bank (PDB). The proteins vary from 200 to 600 residues,
with resolutions better than 1.8 A and R values lower than
0.2. The other one includes eight proteins whose folding nu-
clei have been identified by the original experimental groups

[17].

III. THEORY AND MODEL

Based on the perspectives of protein folding, we propose
two generic assumptions of the evolution model for amino
acid networks. According to the energy landscape perspec-
tive [18,19], a nascent polypeptide chain is navigated by the
funnel-like energy landscape and folded into the native state.
Therefore, the evolution of amino acid networks should be
first considered to be energy-driven. Thus, it is needed to
define the energy preferential attachment—i.e., the energy-
based connection probability of two vertices—in the evolu-
tion of amino acid networks. In this work, we define that this
probability depends on the residue pairing energy. However,
if we only take account of the energy preferential attachment,
it is difficult to explain the preferential short-range interac-
tions in directing protein folding. Baker [20] also pointed out
that interactions between residues close together in sequence
are more likely to form early in folding than those between
widely separated residues. Therefore, besides the energy
preferential attachment, it is deemed that a residue leans to
interact with residues of sequence neighbor—i.e., the neigh-
bor preferential attachment. Then, the connectivity probabil-
ity II;; of residues i and j depends on the residue pairing
energy E;; and the neighbor preferential weight 7,;. This re-
weighting idea is similar with the topomer search model
[21], which can quantitatively account for the folding rates
of two-state proteins. In this study, the basic definition of
connectivity probability II;; is given by

M= — hi=ig (1)

! Ei Ej 771‘jEij’

where Ej; is the link weight according to the magnitude of
the contact energy between residues i and j suggested by
Miyazawa and Jernigan [22], which is related to the types of
the two interacting amino acids. However, the definition of
the neighbor preferential weight 7,; is not intuitive, so more
details about it are now given.

First, we analyze the sequential distance effects for resi-
due interactions. It is needed to define the interaction or edge
between residues in the native proteins. The interaction be-
tween two residues is usually defined based on the distance
between them. In other researches, the cutoff distance is be-
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FIG. 1. The average number of interactions per residue as a
function of sequential distance. Error bars represent 95% confi-
dence intervals.

tween 4.5 and 8.5 A [1]. In this study, we choose 6.5 A as
the cutoff distance and two residues are considered to inter-
act if their Ca atoms are within a distance of 6.5 A. Figure
1 shows the number of interactions per residue as a function
of the sequential distance between the interacting residues up
to the 20th neighbor for the 101 low-homology proteins. As
we know, the interaction between i and i = 1 residues is the
covalent bond, so the number is 1. There is a significant
borderline between the sequence distances of 4 and 5. The
interaction numbers of i with i =2, i =3, and i =4 residues
are larger than those with from i £ 5 to i = 20 residues in the
amino acid sequence. This result agrees with previous stud-
ies [23]. Thus, we can define residues from i =2 to i +4 as
the sequence neighbor residues of i, which are the preferen-
tially chosen residues for the residue i. Then, the two resi-
dues whose sequence distances are more than 4 can be de-
fined as long-range interaction residues. To simplify the
expression, we define the weights 7 of long-range residues
as 1. Meanwhile, it is noted that the interaction number of
sequence distance 2 is larger than those of sequence dis-
tances 3 and 4. The numbers of sequence distances 3 and 4
are similar, but the number of sequence distance 2 is about
double of those of sequence distances 3 and 4. It shows that
the probability of interaction for sequence distance 2 is about
double of those for 3 and 4. Therefore, we define the neigh-
bor preferential weight 7 for sequence distance 2 as 2 times
those for 3 and 4.

However, it is not enough to define the weight 7 only
based on this figure. In the process of protein folding, if a
long-range interaction exists between i and j, their sequence
neighbor residues, such as i+ 1 and j = 1, often have some
interactions. In this study, we call them space neighbor resi-
dues. It is obvious that the weights 7 of space neighbor resi-
dues are larger than those of long-range residues. Thus, this
situation should be considered by the neighbor preferential
rule and the weights of the space neighbor residues should be
estimated. Assuming that i and j have a long-range interac-
tion, it is needed to adjust the neighbor preferential weights
7 between their neighbor residues i =1 and j=* 1. It can be
expressed as follows:
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Although the sequence distance between them is only 1, the
real interaction zone will expand automatically with the
evolving process.

To estimate 7, we assume that i’ and j’ are space neigh-
bor residues. All the long-range residues for i’ can be con-
sidered as a whole. Residue i’ will preferentially choose the
space neighbor residue to connect. Therefore, the connectiv-
ity probability of Il ; should be larger than the probability
sum of all long-range residues. Assuming k' as one of the
long-range residues for residue i’, we obtain

I > > M. (3)
k!

After replacing I1 with Eq. (1), we get

My ki W
SoE o ZuE
and hence
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Since k' is one of the long-range residues for residue i’, 7/
is 1 and expression (5) can be reduced. Then we get
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Since %~1 and the number of space neighbor and se-

quence nelghbor residues is much less than that of long-
range residues, we have

Mjrjr~ N, (7)

where N is the number of the amino acids. From Eq. (7), we
can estimate that the neighbor preferential weights # of
space neighbor residues are about N times of that of long-
range residues. The weight will be adjusted automatically
according to the size of the proteins. As we know, the vol-
umes and sequences of different proteins are not uniform. If
we define the neighbor preferential weight 7 of space neigh-
bor residues as the same constant for all proteins, it will be
too large or too small for different proteins because of their
different sizes. Therefore, this automatically adjusted prefer-
ential weight 7 is appropriate for evolving all the amino acid
networks of proteins with different sizes.

We have defined the sequence neighbor residues, the
space neighbor residues, and the long-range residues. Mean-
while, the neighbor preferential weights for the space neigh-
bor residues and the long-range residues have also been set.
However, the neighbor preferential weights for the sequence
neighbor residue are not defined. Here we assume that the
neighbor preferential weights 7 for sequence distances 3 and
4 are w times that of the space neighbor residue. Then, the
neighbor preferential weight 7 can be expressed as

2wN, |i- j| =
wN,
nij = . . . (®)
N, remdues i and j are space neighbor residues,
1, residues i and j are long-range residues.

There is only one parameter w in the evolving model, and we
can discuss the effect of w on the evolution of the network.

In addition, due to the spatial constrains imposed by
neighboring residues, the vertices in amino acid networks
have a limited number of interactions between them [24]. To
avoid the interactions number increasing unboundedly, we
take an upper limit 15 for it. Therefore, in all, the proposed
model is defined as the following scheme.

Step 1. The evolution starts from the primary structure, an
amino acid chain with only the covalent bond connected.
Then, assign the energy preferential weights for all residues
and the neighbor preferential weights for the sequence neigh-
bor residues and the long-range residues.

Step 2. According to the preferential attachment rule,
choose residues i and j with degree values less than 15 to

connect. The connectivity probability I1;; is given by Eq. (1).

Step 3. If the sequential distance between i and j is larger
than 4, the connection between them is the long-range inter-
action. Then, we adjust the neighbor preferential weights of
space neighbor residues around them as Eq. (7).

Repeat steps 2 and 3 until the edges of the network are
same as those of the native proteins. For each protein, 1000
independent evolution simulations are performed and the
values of the network features are averaged over all simula-
tions.

IV. RESULTS AND DISCUSSION

To verify that both the neighbor and energy preferential
rules are necessary, we investigated three forms of the

061920-3



CHANG et al.
30 . .
& Model 1
¢ Model 2 o
25¢ Model 3 9
20f
- 15}
10}
proteins
L Model2 2 D&
5 / ode: A a @ \W=6
random
0 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6

C

FIG. 2. (Color online) Distribution of the values of the path
length and clustering index for the 101 low-homology proteins.
Error bars represent the standard deviations of the distributions. For
comparison, we also plot data points for random graphs and regular
graphs. For evolving models 1 and 3, w increases from 1 to 100.

model. Model 1 takes account of the two preferential rules.
Model 2 has only the energy preferential rule. In contrast
with model 2, model 3 keeps only the neighbor preferential
rule; i.e., it does not distinguish the types of residues. First,
the general network characteristics are used for comparison,
such as the clustering coefficients C and the characteristic
path lengths L. Figure 2 shows the distribution of the net-
work characteristics for the amino acid network of the 101
low-homology proteins and those for the relevant random
graphs and regular graphs. These results are consistent with
previous studies [3]. Then, we compared the evolving results
of our three models. Since model 2 has only the energy pref-
erential rule, its evolving process is directed only by the
residue contact energy and does not need to change any pa-
rameter. Therefore, in Fig. 2, the evolving result of model 2
has only one point. As shown in Fig. 2, model 2 does not
exhibit small-world phenomena, but shows the features of
random graphs with small clustering coefficients and small
characteristic path lengths. The random graphs have many
long-range connections, which lead to an immediate drop of
the clustering coefficient C. Since model 2 has only the en-
ergy preferential rule, the interactions of residues are deter-
mined by the residue pairing energy, but not influenced by
the sequence distance between residues. Therefore, many
long-range interactions are formed in the evolution process
and the evolution network of model 2 is similar to the ran-
dom graphs. On the contrary, considering the neighbor pref-
erential rule, many short-range interactions are formed to
keep the large C and a few long-range interactions are
formed to keep the small L. Thus, models 1 and 3 can both
exhibit small-world phenomena similar to the native protein.
Therefore, the neighbor preferential rule is the major reason
for the small-world character of the amino acid network.
From Fig. 2, it can be seen that the changes of w have an
important effects on models 1 and 3. This parameter is very
similar to the parameter p in the small-world model [10,11].
When w is increased from 1 to 100, the network character-
istics of models 1 and 3 are changed from the random graph
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to the regular graph. When w increases, the neighbor prefer-
ential weights of sequence neighbor residues increase. Then,
the short-range interactions are increasing and the characters
of networks tend to those of the regular graphs. However,
when w decreases, the long-range interactions are increasing
and the characters of networks tend to those of the random
graphs. When w is 5-7, the characters of networks are much
more similar to those of the native protein structures. We can
set w=06 in the neighbor preferential rule. It can be found that
the neighbor preferential weights of sequence neighbor resi-
dues are larger than those of space neighbor residues. In fact,
space neighbor residues are of the long-range behavior in
sequence distance. Therefore, the result is consistent with
Fig. 1, which shows that sequence neighbor residues are
easier to connect than long-range residues.

Second, we analyze some biological structure characteris-
tics of native proteins and compare the evolved results of the
three models. Nucleation is an important phenomenon in
protein folding. Thus, the structure of folding nucleus is the
biological structure characteristics of amino acid networks
and can differentiate it from other networks. Then, we ana-
lyze the connections of folding nucleus residues to compare
the three evolving models. To measure the folding nucleus
connections, we define T(F,n) as the average contacts of the
folding nucleus residues and P(F,n) as the rate of the con-
nections of folding nucleus residues in the noncovalent con-
nections, where F represents the folding nucleus residues and
n is the number of noncovalent connections formed in the
process of evolution. In our models, the number of noncova-
lent connections n can approximately express the time of
evolution. They can be calculated from the equations

S
T(F,n) == 9)
Np
and
S
2—F X 100%
n
P(F.n)=——", (10)
Ng

where Ny is the number of folding nucleus residues. Along
with forming the noncovalent connections, the contacts of
the folding nucleus residues will increase; Sy is the sum of
these contacts. In Eq. (9), the high value of T(F,n) shows
that folding nucleus residues have many contacts. In con-
trast, the low value of T(F,n) shows that folding nucleus
residues have few contacts. If we replace the folding nucleus
residues with all residues in a protein, the sum of increased
contact numbers for all residues in n noncovalent connec-
tions is 2n. The average value of the contacts for all residues

T(A,n) is 2, where A represents all residues and N is the

number of 1¥esidues. In Eq. (10), the high value of P(F,n)
shows that the connections among folding nucleus residues
constitute the major part of the connections. In contrast, the
low value of P(F,n) shows that the connections of nonfold-
ing nucleus residues are the major part of the connections.
Similarly, the average value of the connections for all resi-

dues P(A,n) is %. The value will not change in the
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FIG. 3. (Color online) T as a function of noncovalent connection
number 7 is shown for the eight proteins whose folding nuclei have
been identified. The blue square is T(F,n) for model 1. The green
triangle is 7(F,n) for model 2. The pink circle is T(F,n) for model
3. The black diamond shows the average value of the contacts for
all residues T(A,n) as the control.

process of evolving, so we can take it as a control for com-
parison.

Figures 3 and 4 show T and P as functions of noncovalent
connection number n for the eight proteins whose folding
nuclei have been identified. The values of P(F,n) for the
native proteins are higher than the average value of the con-
nections for all residues P(A,n). The folding nucleus resi-
dues are usually hydrophobic and collapsed in the core of the
proteins, and so they have more connections than other resi-
dues. With the energy preferential rule, models 1 and 2 can
mimic the higher contact number for the folding nucleus
residues T(F,n) than the average value of all residues
T(A,n) and show a high value of P(F,n) after the process of
adding edges. However, if we do not distinguish the types of
residue as model 3, the contact number for the folding
nucleus residues T(F,n) is similar to T(A,n), and P(F,n) is
not different from the average value P(A,n) in the process of
adding edges. It shows that without the energy preferential
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rule, the folding nucleus residues will not be chosen prefer-
entially in the process of adding edges. Therefore, the energy
preferential rule is the major reason for the biological struc-
ture character of the amino acid network. Furthermore,
P(F,n) of model 1 decreases with the increasing of the non-
covalent connections. As the statement of the folding
nucleation-growth  (or nucleation-condensation) model
[25,26], a nucleation step is followed by a rapid propagation.
In the beginning of folding, the noncovalent connections are
quite few. These connections will form the folding nucleus
first. Thus, the average contacts of the folding nucleus resi-
dues T(F,n) increase quickly and the rate of the connections
of the folding nucleus residues P(F,n) will be high. After the
accomplishment of the folding nucleus, the average contacts
of the folding nucleus residues will increase slowly and the
rate of the connections of the folding nucleus will decrease
with the propagation. Therefore, T(F,n) increases slowly
and P(F,n) will be low. By using model 1, we find that the
simulation result is in agreement with the nucleation-growth
model. However, without the neighbor preferential rule as
model 2, T(F,n) keeps increasing quickly and P(F,n) holds
high values in the process of adding edges.

The folding rate is also an important parameter in protein
folding. It is found that there are experimental data [27] of
the folding rate k, for four proteins 1AYE, 1TEN, 1URN,
and 2ACY in Fig. 3, whose In kf are 6.8 s7!, 1.1 s7!,
5.8 s7!, and 0.92 s7!, respectively. Some studies show that
long-range contact orders have strong negative correlation
with the protein folding rate [27]. Our model can imply some
information on long-range contacts, so it may reflect some
meaningful points for the protein folding rate. As we know,
proteins with high long-range contact orders should have
much more long-range contacts in their structures. If proteins
have low values of the folding rate, such as 1TEN and
2ACY, they will have high values of the long-range contact
order. Then, a proper evolution model used to simulate this
kind of proteins with low folding rates should give out more
long-range contacts. In the networks evolved with the energy
preferential rule as models 1 and 2, many long-range inter-
actions are formed. As shown in Figs. 3 and 4, we find that
the evolution process of model 1 is similar to that of model 2
for these proteins. In contrast, for proteins with high values
of the folding rate, such as 1AYE and 1URN, a proper evo-
lution model should give out less long-range contacts. Then,
the evolution processes of model 1 are far from those of
model 2.

The degree distribution is an important statistical charac-
teristic for complex networks and often determines important
global characteristics [28]. The correlation coefficients of the
degree distribution are used to compare the similarity be-
tween the two networks of simulation and native protein. In
this study, besides the general correlation of the degree dis-
tribution, we define another correlation for the single residue
degree. Since every residue has its special sequence number
and degree value, each sequence number will correspond to a
degree value. The correlation of the residue degree between
simulation and native protein can be also used to show the
similarity. We call it the degree correlation of the single resi-
due. The number of residues is much more than the number
of degrees, so the degree correlation for the single residue is
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FIG. 4. (Color online) P as a function of noncovalent connections number 7 is shown for the eight proteins whose folding nuclei have
been identified. The blue square is P(F,n) for model 1. The green triangle is P(F,n) for model 2. The pink circle is P(F,n) for model 3. The
red cross is P(F,n) for the native protein. The black diamond shows the average value of the connections for all residues P(A,n) as the

control.

more sensitive to compare the similarity than the general
correlation of degree distribution. Figure 5 shows the corre-
lation coefficient of the degree for the single residue and the
correlation coefficient of the degree distribution for 101 low-
homology proteins. The degree values of the single residue
in model 1 are in strong correlation with those of the native
proteins. This result shows that the residues with many inter-
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FIG. 5. The correlation coefficient of the degree for the single
residue (a) and the correlation coefficient of the degree distribution
(b) for the 101 low-homology proteins. Error bars represent 95%
confidence intervals.

actions in the native proteins also have high degree values by
evolving with the two preferential rules. In contrast, residues
with few interactions in the native proteins have small degree
values. However, without the energy preferential rule as
model 3, the correlation is not strong. By using model 3, the
evolution of networks does not consider the difference of the
residue types. Therefore, it is difficult for the energy prefer-
ential residues, such as the hydrophobic residues, to exhibit
the high degree. Meanwhile, without the neighbor preferen-
tial rule as model 2, the correlation is not strong yet. The
energy preferential residues will keep much higher probabil-
ity to link than those of the native proteins. Therefore, the
connectivity is also not similar to the native proteins. As a
result, compared with the degree distribution, the correlation
of model 1 is stronger than those of models 2 and 3. From
the comparisons, it can be seen that by taking account of the
two rules, model 1 has the better performance than models 2
and 3 in the reflection of the structure of native proteins.
Our model is a simple evolving model, and it can give
some global and/or statistical results for the amino acid net-
work. Similarly, many evolving models [29] have been used
to explain the global and/or statistic characteristics of real-
world networks. For example, the scale-free model [8] can
explain a series of networks with a special degree distribu-
tion. Since studies of the evolving model emphasize particu-
larly the description of global and/or statistical properties, it
is difficult for them to give elaborate structures of real net-
works. Our model also has the same problem. It is difficult to
describe and show the protein structures only with informa-
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tion on contacts. Therefore, it is unsuitable for our model to
describe the detailed coordinates of atoms and compare with
atom-level protein-folding models. The main advantage of
our model is to easily give out the contact information be-
tween residues through the perspectives of network evolu-
tion. However, these contacts are not completely consistent
with the native contacts of proteins. We use this simple
model just to explore the evolving mechanism of amino acid
networks and get some global and/or statistical results.

V. CONCLUSION

Based on the perspectives of protein folding, we propose
an evolution model of amino acid networks. In our model,
the evolution starts from the amino acid sequence of a native
protein and it is guided by the two generic assumptions of
the neighbor preferential and the energy preferential rules.

PHYSICAL REVIEW E 77, 061920 (2008)

Applied to two data sets of native proteins, it is found that
our model not only can mimic the characters of general net-
works, but also can agree with the real process of protein
folding to some extent. Furthermore, we find that the neigh-
bor preferential rule predominates the general network char-
acters and the energy preferential rule predominates the spe-
cific biological structure characters. The model with one type
of preferential rules can only obtain part of the characters of
the amino acid network. In addition, the model shows that
both topology and energy play important roles in protein
folding. These mechanisms might provide some insights for
future studies of protein folding.
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